Lesson Plan

Name of Assistant/Associate Professor: Arun Soni

Class and section: B.Sc I

Chemistry Lesson Plan: Week (From FEB 2023 to May 2023)

Chapter 1 Hydrogen –Bonding &Vander Waal's Forces	
 Hydrogen Bonding –Definition 	
 Types of Hydrogen Bonding 	Feb, Week3rd
 Effect of Hydrogen Bonding on Properties of Substance 	
 Applications of Hydrogen Bonding 	E-1 W-1-2-1
• Brief discussion of various types of Vander Waal's forces	Feb, week 3rd
 Introduction of metallic bond 	
 Qualitative Idea of Valence Bond theory 	Feb, Week 4 th
 Band theory of metallic bond 	
 Semiconductors-Introduction 	E-1 W/1-4th
 Types & Applications 	Feb, week 4
Chapter 2: S-Block Elements	
 Comparative study of the element including diagonal 	
Relationship	
• Anomalous Behaviour of Li & Bi compared to other Elements in	March, Week Ist
Same Group	
 Salient feature of hydrides, Oxides 	
 Salient Feature of Halide And Hydroxide 	Marah Weak Ist
 Behaviour of Solution in liquid NH₃ 	March, week la
 Solvation 	March, Week 2 nd
 Complexation tendencies including their function in Bio system 	
Chapter 3: Chemistry of Noble Gases	
 Chemical properties of the noble gases 	Marah Weak 2nd
 Emphasis on their low chemical properties 	Watch, week 2
 Chemistry of xenon 	March, Week 2 nd
 Structure & bonding of fluoride ,oxides & oxyfluorides of xenon 	
Chapter 4: p-Block Elements	
 Electronic Configuration 	March, Week 3 rd
 Atomic size & Ionic size 	
 Metallic Character 	
 Melting Point 	
 Ionization Energy 	March, Week 3 rd
 Electron Affinity 	
 Electronegativity 	
 Inert Pair Effect 	Marchl Week 1th
 Diagonal Relationship 	Watchi, Week 4
 Test of Chapter 1 And 2 	
o Diborane	
 Properties & Structure of Diborane 	
 Borazine & its structure 	April,Week Ist
 Chemical properties of Borazine 	
 Trihalides of Boron 	April,Week 2 nd

0	Relative Strength of Trihalides of Boron as Lewis Acid	
0	Structure of Aluminium (III) Chloride	
0	Catenation	
0	Carbides	April, Week 2 nd
0	Fluoro Carbons	
0	Silicates	April, Week 3 rd
0	Types and Structure of Silicates	
0	Silicones – General methods of preparations	April Week 3rd
0	Properties & its uses	April, Week 5
0	Oxides-structure of oxides of N & P	April Week 1th
0	Oxoacids –Structure & relative acid Strength of Oxoacids of N & P	April, Week 4
0	Structure of white ,yellow & Red phosphorous	
0	Oxoacids of Sulphur	April Week 1th
0	Structure & Acid strength	April Week 4
0	H ₂ O ₂	May Week Ist
0	Properties and Uses	Way, Week I
0	Basic Properties of Halogens	May, Week I st
0	Interhalogen Compound	May Week 2nd
0	Their Types and Structure	May, Week 2
0	Hydra and Oxy Acids of Chlorine	May, Week 2 nd
0	Structure and Acidic Strength	
0	Cationic Nature of Iodine	May, Week 3 rd
0	Problems From S-block and P-block Elements	May , Week 3 rd
0	Revision	
0		

Lesson Plan

Name of Assistant/Associate Professor: SEEMA KASHYAP

Class and section: B.Sc I Med & Non Med.

Chemistry Lesson Plan: Week(From FEB 2023 to May 2023)

Chapte	er 1 KINETICS 1	
0	Rate of reaction, rate equation	Feb, Week3rd
0	Factor effecting the rate of reaction, order of reaction	Feb, Week 3rd
o Int	egrated rate equation of zero and first order reaction	Feb , Week 4 th
o Int	egrated rate equation of second and third order reaction	Feb , Week 4 th
0	Method of determination of order of reaction	March, Week Ist
Chapte	er 2 Kinetics	
0	Arrhenius equation and effect of temperature	March, Week Ist
0	Simple collision theory of reaction rate	March, Week 2 nd
0	Bimolecular collision theory of reaction rate	
0	Transition state theory of bimolecular reaction	March, Week 2 nd
0	Problem of chapter of 1 & 2	March, Week 2 nd
0	Assignment I	
0	Test of chapter 1	March, Week 3 rd
Chapte	er 3 Electrochemistry 1	
0	Electrolytic conduction and factor effecting	March, Week 3 rd
Specifi	c conductance, equivalent conductance, molar conductance	Marchl, Week 4 th
0	Relation between different conductance	April,Week Ist
0	Effect of concentration on various conductance	April,Week 2 nd
0	Arrhenius theory of ionization, Ostwald dilution law	April, Week 2 nd
9		April, Week 3 rd
0	Debye-HuckeL-Onsager equation, transpot number	
0	Definition and determination by Hittoirfs method	April, Week 3 rd
0	Problems From Chapter 3	April, Week 4 th
СНА	PTER-4 Electrochemistry 2	
0	Kohlrausch law and its numerical	April Week 4 th
0	Calculation of molar ionic conductance and effect of viscosity,	
	temperature	May, Week I st
0	And pressure on it	
0	Application of Kohlrausch law in calculation of weak	May, Week Ist
	electrochemistry at infinite dilution	
0	Application of conductivity measurement	
0	Determination of degree of dissociation	May, Week 2 nd
0	Determination of pH, K_a and pK_a	May, Week 2 nd
0	Determination of solubility product and numerical based on it	May, Week 2 nd
0	Conductometric titration	May, Week 3 rd

0	Henderson-Hazelbalch equation	May, Week 3 rd
0	Buffer solution and buffer action	May, Week 3 rd
0	Mechanism of buffer action	

LESSON PLAN

Name of Assistant/ Associate Professor : SEEMA KASHYAP

Class and section : B.Sc I Med. & Non Med.

Chemistry Lesson Plan: 18 Week From FEB 2023 to May 2023)

Chapter 1: Alkenes	
• 1.1 Nomenclature of alkenes	Eab Waals2rd
 1.2 mechanisms of dehydration of alcohol 	Feb, weekslu
 1.3 mechanisms of dehydrohalogenation of alkyl halides 	Eab Waak and
• 1.4 saytzeff rule, Hoffmann elimination	Teb, week sid
 1.5 physical properties and relative stabilities of alkenes 	Feb, Week 4 th
• 1.6 chemical reactions of alkenes – mechanisms involved in hydrogenation	
1.7 electrophilic and free radical addition	Feb, Week 4 th
	March, Week Ist
• 1.8 Markownikoff's rule	
1.9 hydroboration – oxidation	
 1.10 oxymercuration reduction 	March Week I st
• 1.11 ozonolysis	
• 1.12 hydration	March , Week
 1.13 hydroxylation and oxidation with KMnO₄ 	2 nd
Chapter 2: Arenes and Aromaticity	
2.1 Nomenclature of benzene derivatives : Aromatic nucleus and side chain	March, Week 2 nd
2.2 Aromaticity: Huckel rule	March, Week 2 nd
 2.3 aromatic ions, annulenes upto 10 carbon atoms 	March, Week 3 rd
 2.4 aromatic, anti- aromatic and non – aromatic compounds 	
2.5 aromatic electrophilic substitution	March, Week 3 rd
 2.6 mechanism of nitration. Halogenationand sulphonation 	March, Week 3rd
• 2.7 Friedal – craft reaction	Marchl, Week 4 th
2.8 energy profile diagram	
 2.9 activating, deactivating substituents and orientations 	April,Week Ist
• problems of chapter 1& 2	April,Week 2 nd
• test	April, Week 2 nd
Chapter 3: Dienes and Alkynes	
• 3.1 Nomenclature and classification of dienes	April, Week 3 rd
• 3.2 Structure of butadiene	-
• 3.3 chemical reactions – 1,2 &1,4 additions	Amil West 2rd
• 3.4 Diels – alder reaction	April, week 3 rd
• 3.5 nomenclature, structure and bonding in alkynes	April Wools 4th
• 3.6 methods of formation & chemical reaction of alkynes, acidity of alkynes	April, week 4 th
• 3.7 mechanism of electrophilic and nucleophilic addition reactons	Max West Ist
 3.8 hydroboration – oxidation of alkynes 	May, week I
• problem of chapter 3	May, Week Ist
Chapter 4: Alkyl and aryl halides	
• 4.1 Nomenclature and classes of alkyl halides	May, Week 2 nd
 4.2 methods of formation, chemical reactions 	
• 4.3 Mechanisms and stereochemistry of nucleophilic substitution reactions of alkyl	May, Week 2 nd
halides	
 4.4 S_N¹& S_N²reactions with energy profile diagrams 	
• 4.5 methods of formation & chemical reactions of aryl halides	May, Week
	2 nd

• 4.6 addition elimination and the elimination addition mechanisms of nucleophilic aromatic	
substitutions reactions	
• 4.7 relative reactivities of alkyl halides vs allyl, vinyl and aryl halides	May, Week 3 rd