Lesson Plan

Name of the Assistant/ Associate Professor: - Mrs Nidhi Sharma

Class and Section: M.Sc. Physics 2nd Sem.

Subject: Quantum Mechanics

Paper code: 18PHY22HC1

Week	Date	Topics
1	1 st March-	Unit I:
	7 th March	
		Time Independent perturbation theory: Meaning of perturbation
		Non-degenerate perturbation theory
		Harmonic oscillator subjected to different perturbation: x, x2, x and x
		Degenerate perturbation theory: two and g fold cases
		The Stark effect
		The Fine structure of hydrogen
2		Zeeman Effect
		Normal and Anomalous
	741-	Variational Principle
	March-	Ground state of He-atom by both perturbation and varitional method
	14 th	Estimation of ground state energy of hydrogen molecule by perturbation method
	March	WKB approximation: General formulism validity
3		Bound states of Potential wells with no one and two rigid walls
		Tunneling trough a barrier
		Time dependent perturbation theory: Transition probability
		Transition probability for constant and harmonic perturbations
	15 th	Adiabatic and sudden approximation
	March-	Interaction of atoms with radiation: classical treatment of incident radiation
	21 th	Quantization of E.M. field
	March	Transition rates for absorption and emission of radiation
4 Week		Electric Dipole Approximation
	29 th March-	Transition rates within dipole approximation
	4 th April	Selection rules for electric dipole transitions

		Magnetic quantum numbers
		Angular momentum quantum numbers
		Spontaneous emission: Einstein A and B coefficients
5	5 th April- 11 th April	Life time and Line width
		Scattering and cross-section
		Connection between scattering angle in Lab and CM frames
		Connecting the Lab and CM cross sections
		Scattering amplitude spineless particles
		Scattering amplitude and differential cross sections
6		Solution of Schrödinger equation for scattering problem
0		Born approximation and its validity
		Partial wave analysis
		Partial wave analysis for elastic and inelastic scattering,
	12 th April- 18 th April	Scattering from a square well potential and Hard sphere potential
7		Many particle systems: Schrodinger equation
		Interchange symmetry
		System of distinguishable identical particles
		System of identical particles: identical particles in classical and quantum mechanics
	19 th April- 25 th April	Exchange symmetry
8		Symmetrization postulate
		Constructing symmetric and anti- symmetric wave functions
		System identical non interacting particles
		Wave function of two particles
		Three particle and many particle systems
	26 th April- 2 nd May	Pauli's exclusion principle and Slater's determinant
9	3 rd May-9 th May	Spin states of a two electron system, Test and Assignments